
django-braces Documentation
Release 1.4.0

Kenneth Love and Chris Jones

Oct 08, 2017

Contents

1 Access Mixins 3
1.1 LoginRequiredMixin . 4
1.2 PermissionRequiredMixin . 4
1.3 MultiplePermissionsRequiredMixin . 5
1.4 GroupRequiredMixin . 5
1.5 UserPassesTestMixin . 7
1.6 SuperuserRequiredMixin . 7
1.7 AnonymousRequiredMixin . 7
1.8 StaffuserRequiredMixin . 8

2 Form Mixins 9
2.1 CsrfExemptMixin . 10
2.2 UserFormKwargsMixin . 10
2.3 UserKwargModelFormMixin . 11
2.4 SuccessURLRedirectListMixin . 11
2.5 FormValidMessageMixin . 11
2.6 FormInvalidMessageMixin . 12
2.7 FormMessagesMixin . 13

3 Other Mixins 15
3.1 SetHeadlineMixin . 16
3.2 StaticContextMixin . 16
3.3 SelectRelatedMixin . 17
3.4 PrefetchRelatedMixin . 17
3.5 JSONResponseMixin . 18
3.6 JsonRequestResponseMixin . 19
3.7 AjaxResponseMixin . 20
3.8 OrderableListMixin . 20
3.9 CanonicalSlugDetailMixin . 21
3.10 MessageMixin . 22
3.11 AllVerbsMixin . 23

4 Indices and tables 25

i

ii

django-braces Documentation, Release 1.4.0

You can view the code of our project or fork it and add your own mixins (please, send them back to us), on Github.

Contents 1

https://github.com/brack3t/django-braces

django-braces Documentation, Release 1.4.0

2 Contents

CHAPTER 1

Access Mixins

These mixins all control a user’s access to a given view. Since many of them extend the AccessMixin, the following
are common attributes:

login_url = settings.LOGIN_URL
redirect_field_name = REDIRECT_FIELD_NAME
raise_exception = False

The raise_exception attribute will cause the view to raise a PermissionDenied exception if it is set to
True, otherwise the view will redirect to the login view provided.

Contents

• Access Mixins

– LoginRequiredMixin

– PermissionRequiredMixin

– MultiplePermissionsRequiredMixin

– GroupRequiredMixin

* Standard Django Usage

* Multiple Groups Possible Usage

* Custom Group Usage

– UserPassesTestMixin

– SuperuserRequiredMixin

– AnonymousRequiredMixin

* Static Examples

* Dynamic Example

3

django-braces Documentation, Release 1.4.0

– StaffuserRequiredMixin

LoginRequiredMixin

This mixin is rather simple and is generally the first inherited class in any view. If you don’t have an authenticated user,
there’s no need to go any further. If you’ve used Django before you are probably familiar with the login_required
decorator. This mixin replicates the decorator’s functionality.

Note: As of version 1.0, the LoginRequiredMixin has been rewritten to behave like the rest of the
access mixins. It now accepts login_url, redirect_field_name and raise_exception.

Note: This should be the left-most mixin of a view, except when combined with CsrfExemptMixin -
which in that case should be the left-most mixin.

from django.views.generic import TemplateView

from braces.views import LoginRequiredMixin

class SomeSecretView(LoginRequiredMixin, TemplateView):
template_name = "path/to/template.html"

#optional
login_url = "/signup/"
redirect_field_name = "hollaback"
raise_exception = True

def get(self, request):
return self.render_to_response({})

PermissionRequiredMixin

This mixin was originally written by Daniel Sokolowski (code here), but this version eliminates an unneeded render if
the permissions check fails.

Rather than overloading the dispatch method manually on every view that needs to check for the existence of a
permission, use this mixin and set the permission_required class attribute on your view. If you don’t specify
permission_required on your view, an ImproperlyConfigured exception is raised reminding you that
you haven’t set it.

The one limitation of this mixin is that it can only accept a single permission. If you need multiple permissions use
MultiplePermissionsRequiredMixin.

In normal use of this mixin, LoginRequiredMixin comes first, then the PermissionRequiredMixin. If the user
isn’t an authenticated user, there is no point in checking for any permissions.

Note: If you are using Django’s built in auth system, superusers automatically have all permissions
in your system.

4 Chapter 1. Access Mixins

https://github.com/danols
https://github.com/lukaszb/django-guardian/issues/48

django-braces Documentation, Release 1.4.0

from django.views import TemplateView

from braces import views

class SomeProtectedView(views.LoginRequiredMixin,
views.PermissionRequiredMixin,
TemplateView):

permission_required = "auth.change_user"
template_name = "path/to/template.html"

The PermissionRequiredMixin also offers a check_permssions method that should be overridden if you
need custom permissions checking.

MultiplePermissionsRequiredMixin

The MultiplePermissionsRequiredMixin is a more powerful version of the PermissionRequiredMixin. This
view mixin can handle multiple permissions by setting the mandatory permissions attribute as a dict with the keys
any and/or all to a list or tuple of permissions. The all key requires the request.user to have all of the
specified permissions. The any key requires the request.user to have at least one of the specified permissions.
If you only need to check a single permission, the PermissionRequiredMixin is a better choice.

Note: If you are using Django’s built in auth system, superusers automatically have all permissions
in your system.

from django.views import TemplateView

from braces import views

class SomeProtectedView(views.LoginRequiredMixin,
views.MultiplePermissionsRequiredMixin,
TemplateView):

#required
permissions = {

"all": ("blog.add_post", "blog.change_post"),
"any": ("blog.delete_post", "user.change_user")

}

The MultiplePermissionsRequiredMixin also offers a check_permssionsmethod that should be over-
ridden if you need custom permissions checking.

GroupRequiredMixin

New in version 1.2.

The GroupRequiredMixin ensures that the requesting user is in the group or groups specified. This view mixin
can handle multiple groups by setting the mandatory group_required attribute as a list or tuple.

1.3. MultiplePermissionsRequiredMixin 5

django-braces Documentation, Release 1.4.0

Note: The mixin assumes you’re using Django’s default Group model and that your user model
provides groups as a ManyToMany relationship. If this is not the case, you’ll need to override
check_membership in the mixin to handle your custom set up.

Standard Django Usage

from django.views import TemplateView

from braces.views import GroupRequiredMixin

class SomeProtectedView(GroupRequiredMixin, TemplateView):

#required
group_required = u"editors"

Multiple Groups Possible Usage

from django.views import TemplateView

from braces.views import GroupRequiredMixin

class SomeProtectedView(GroupRequiredMixin, TemplateView):

#required
group_required = [u"editors", u"admins"]

Custom Group Usage

from django.views import TemplateView

from braces.views import GroupRequiredMixin

class SomeProtectedView(GroupRequiredMixin, TemplateView):

#required
group_required = u"editors"

def check_membership(self, group):
...
Check some other system for group membership
if user_in_group:

return True
else:

return False

6 Chapter 1. Access Mixins

django-braces Documentation, Release 1.4.0

UserPassesTestMixin

New in version 1.3.0.

Mixin that reimplements the user_passes_test decorator. This is helpful for much more complicated cases than check-
ing if user is_superuser (for example if their email is from specific a domain).

from django.views import TemplateView

from braces.views import UserPassesTestMixin

class SomeUserPassView(UserPassesTestMixin, TemplateView):
def test_func(self, user):

return (user.is_staff and not user.is_superuser
and user.email.endswith(u"mydomain.com"))

SuperuserRequiredMixin

Another permission-based mixin. This is specifically for requiring a user to be a superuser. Comes in handy for tools
that only privileged users should have access to.

from django.views import TemplateView

from braces import views

class SomeSuperuserView(views.LoginRequiredMixin,
views.SuperuserRequiredMixin,
TemplateView):

template_name = u"path/to/template.html"

AnonymousRequiredMixin

New in version 1.4.0.

Mixin that will redirect authenticated users to a different view. The default redirect is to Django’s set-
tings.LOGIN_REDIRECT_URL.

Static Examples

from django.views import TemplateView

from braces.views import AnonymousRequiredMixin

class SomeView(AnonymousRequiredMixin, TemplateView):
authenticated_redirect_url = u"/send/away/"

1.5. UserPassesTestMixin 7

https://docs.djangoproject.com/en/1.6/topics/auth/default/#django.contrib.auth.decorators.user_passes_test
https://docs.djangoproject.com/en/1.6/ref/settings/#login-redirect-url
https://docs.djangoproject.com/en/1.6/ref/settings/#login-redirect-url

django-braces Documentation, Release 1.4.0

from django.core.urlresolvers import reverse_lazy
from django.views import TemplateView

from braces.views import AnonymousRequiredMixin

class SomeLazyView(AnonymousRequiredMixin, TemplateView):
authenticated_redirect_url = reverse_lazy(u"view_url")

Dynamic Example

from django.views import TemplateView

from braces.views import AnonymousRequiredMixin

class SomeView(AnonymousRequiredMixin, TemplateView):
""" Redirect based on user level """
def get_authenticated_redirect_url(self):

if self.request.user.is_superuser:
return u"/admin/"

return u"/somewhere/else/"

StaffuserRequiredMixin

Similar to SuperuserRequiredMixin, this mixin allows you to require a user with is_staff set to True.

from django.views import TemplateView

from braces import views

class SomeStaffuserView(views.LoginRequiredMixin,
views.StaffuserRequiredMixin,
TemplateView):

template_name = u"path/to/template.html"

8 Chapter 1. Access Mixins

CHAPTER 2

Form Mixins

All of these mixins, with one exception, modify how forms are handled within views. The
UserKwargModelFormMixin is a mixin for use in forms to auto-pop a user kwarg.

Contents

• Form Mixins

– CsrfExemptMixin

– UserFormKwargsMixin

* Usage

– UserKwargModelFormMixin

* Usage

– SuccessURLRedirectListMixin

– FormValidMessageMixin

* Static Example

* Dynamic Example

– FormInvalidMessageMixin

* Static Example

* Dynamic Example

– FormMessagesMixin

* Static & Dynamic Example

9

django-braces Documentation, Release 1.4.0

CsrfExemptMixin

If you have Django’s CSRF protection middleware enabled you can exempt views using the csrf_exempt decorator.
This mixin exempts POST requests from the CSRF protection middleware without requiring that you decorate the
dispatch method.

Note: This mixin should always be the left-most plugin.

from django.views.generic import UpdateView

from braces.views import LoginRequiredMixin, CsrfExemptMixin

from profiles.models import Profile

class UpdateProfileView(CsrfExemptMixin, LoginRequiredMixin, UpdateView):
model = Profile

UserFormKwargsMixin

A common pattern in Django is to have forms that are customized to a user. To custom tailor the form for users, you
have to pass that user instance into the form and, based on their permission level or other details, change certain fields
or add specific options within the forms __init__ method.

This mixin automates the process of overloading the get_form_kwargs (this method is available in any
generic view which handles a form) method and stuffs the user instance into the form kwargs. The
user can then be pop()``ed off in the form. **Always** remember to pop the user from
the kwargs before calling ``super() on your form, otherwise the form will get an unexpected keyword
argument.

Usage

from django.views.generic import CreateView

from braces.views import LoginRequiredMixin, UserFormKwargsMixin
from next.example import UserForm

class SomeSecretView(LoginRequiredMixin, UserFormKwargsMixin,
TemplateView):

form_class = UserForm
model = User
template_name = "path/to/template.html"

This obviously pairs very nicely with the following mixin.

10 Chapter 2. Form Mixins

https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.5/ref/contrib/csrf/#django.views.decorators.csrf.csrf_exempt

django-braces Documentation, Release 1.4.0

UserKwargModelFormMixin

The UserKwargModelFormMixin is a form mixin to go along with our UserFormKwargsMixin. This becomes
the first inherited class of our forms that receive the user keyword argument. With this mixin, the pop()``ing
of the ``user is automated and no longer has to be done manually on every form that needs this behavior.

Usage

from braces.forms import UserKwargModelFormMixin

class UserForm(UserKwargModelFormMixin, forms.ModelForm):
class Meta:

model = User

def __init__(self, *args, **kwargs):
super(UserForm, self).__init__(*args, **kwargs)

if not self.user.is_superuser:
del self.fields["group"]

SuccessURLRedirectListMixin

The SuccessURLRedirectListMixin is a bit more tailored to how CRUD is often handled within CM-
Ses. Many CMSes, by design, redirect the user to the ListView for whatever model they are working with,
whether they are creating a new instance, editing an existing one, or deleting one. Rather than having to override
get_success_url on every view, use this mixin and pass it a reversible route name. Example:

urls.py
url(r"^users/$", UserListView.as_view(), name="users_list"),

views.py
from django.views import CreateView

from braces import views

class UserCreateView(views.LoginRequiredMixin, views.PermissionRequiredMixin,
views.SuccessURLRedirectListMixin, CreateView):

form_class = UserForm
model = User
permission_required = "auth.add_user"
success_list_url = "users_list"
...

FormValidMessageMixin

New in version 1.2.

2.3. UserKwargModelFormMixin 11

http://en.wikipedia.org/wiki/Create,_read,_update_and_delete

django-braces Documentation, Release 1.4.0

The FormValidMessageMixin allows you to to statically or programmatically set a message to be
returned using Django’s messages framework when the form is valid. The returned message is con-
trolled by the form_valid_message property which can either be set on the view or returned by the
get_form_valid_message method. The message is not processed until the end of the form_valid method.

Warning: This mixin requires the Django messages app to be enabled.

Note: This mixin is designed for use with Django’s generic form class-based views, e.g. FormView,
CreateView, UpdateView

Static Example

from django.utils.translation import ugettext_lazy as _
from django.views.generic import CreateView

from braces.views import FormValidMessageMixin

class BlogPostCreateView(FormValidMessageMixin, CreateView):
form_class = PostForm
model = Post
form_valid_message = _(u"Blog post created!")

Dynamic Example

from django.views.generic import CreateView

from braces.views import FormValidMessageMixin

class BlogPostCreateView(FormValidMessageMixin, CreateView):
form_class = PostForm
model = Post

def get_form_valid_message(self):
return u"{0} created!".format(self.object.title)

FormInvalidMessageMixin

New in version 1.2.

The FormInvalidMessageMixin allows you to to statically or programmatically set a message to be
returned using Django’s messages framework when the form is invalid. The returned message is con-
trolled by the form_invalid_message property which can either be set on the view or returned by the
get_form_invalid_message method. The message is not processed until the end of the form_invalid
method.

12 Chapter 2. Form Mixins

https://docs.djangoproject.com/en/1.5/ref/contrib/messages/
https://docs.djangoproject.com/en/1.5/ref/contrib/messages/
https://docs.djangoproject.com/en/1.5/ref/contrib/messages/

django-braces Documentation, Release 1.4.0

Warning: This mixin requires the Django messages app to be enabled.

Note: This mixin is designed for use with Django’s generic form class-based views, e.g. FormView,
CreateView, UpdateView

Static Example

from django.utils.translation import ugettext_lazy
from django.views.generic import CreateView

from braces.views import FormInvalidMessageMixin

class BlogPostCreateView(FormInvalidMessageMixin, CreateView):
form_class = PostForm
model = Post
form_invalid_message = _(u"Oh snap, something went wrong!")

Dynamic Example

from django.utils.translation import ugettext_lazy as _
from django.views.generic import CreateView

from braces.views import FormInvalidMessageMixin

class BlogPostCreateView(FormInvalidMessageMixin, CreateView):
form_class = PostForm
model = Post

def get_form_invalid_message(self):
return _(u"Some custom message")

FormMessagesMixin

New in version 1.2.

FormMessagesMixin is a convenience mixin which combines FormValidMessageMixin and FormInvalidMes-
sageMixin since we commonly provide messages for both states (form_valid, form_invalid).

Warning: This mixin requires the Django messages app to be enabled.

2.7. FormMessagesMixin 13

https://docs.djangoproject.com/en/1.5/ref/contrib/messages/
https://docs.djangoproject.com/en/1.5/ref/contrib/messages/

django-braces Documentation, Release 1.4.0

Static & Dynamic Example

from django.utils.translation import ugettext_lazy as _
from django.views.generic import CreateView

from braces.views import FormMessagesMixin

class BlogPostCreateView(FormMessagesMixin, CreateView):
form_class = PostForm
form_invalid_message = _(u"Something went wrong, post was not saved")
model = Post

def get_form_valid_message(self):
return u"{0} created!".format(self.object.title)

14 Chapter 2. Form Mixins

CHAPTER 3

Other Mixins

These mixins handle other random bits of Django’s views, like controlling output, controlling content types, or setting
values in the context.

Contents

• Other Mixins

– SetHeadlineMixin

* Static Example

* Dynamic Example

– StaticContextMixin

* View Example

* URL Example

– SelectRelatedMixin

– PrefetchRelatedMixin

– JSONResponseMixin

– JsonRequestResponseMixin

– AjaxResponseMixin

– OrderableListMixin

– CanonicalSlugDetailMixin

– MessageMixin

– AllVerbsMixin

15

django-braces Documentation, Release 1.4.0

SetHeadlineMixin

The SetHeadlineMixin allows you to statically or programmatically set the headline of any of your views. Ide-
ally, you’ll write as few templates as possible, so a mixin like this helps you reuse generic templates. Its usage is
amazingly straightforward and works much like Django’s built-in get_queryset method. This mixin has two
ways of being used:

Static Example

from django.utils.translation import ugettext_lazy as _
from django.views import TemplateView

from braces.views import SetHeadlineMixin

class HeadlineView(SetHeadlineMixin, TemplateView):
headline = _(u"This is our headline")
template_name = u"path/to/template.html"

Dynamic Example

from datetime import date

from django.views import TemplateView

from braces.views import SetHeadlineMixin

class HeadlineView(SetHeadlineMixin, TemplateView):
template_name = u"path/to/template.html"

def get_headline(self):
return u"This is our headline for {0}".format(date.today().isoformat())

For both usages, the context now contains a headline key with your headline.

StaticContextMixin

New in version 1.4.

The StaticContextMixin allows you to easily set static context data by using the static_context property.

Note: While it’s possible to override the StaticContextMixin.get_static_context method, it’s not
very practical. If you have a need to override a method for dynamic context data it’s best to override the standard
get_context_data method of Django’s generic class-based views.

16 Chapter 3. Other Mixins

django-braces Documentation, Release 1.4.0

View Example

views.py

from django.views import TemplateView

from braces.views import StaticContextMixin

class ContextTemplateView(StaticContextMixin, TemplateView):
static_context = {u"nav_home": True}

URL Example

urls.py

urlpatterns = patterns(
'',
url(ur"^$",

ContextTemplateView.as_view(
template_name=u"index.html",
static_context={u"nav_home": True}

),
name=u"index")

)

SelectRelatedMixin

A simple mixin which allows you to specify a list or tuple of foreign key fields to perform a select_related on. See
Django’s docs for more information on select_related.

views.py
from django.views.generic import DetailView

from braces.views import SelectRelatedMixin

from profiles.models import Profile

class UserProfileView(SelectRelatedMixin, DetailView):
model = Profile
select_related = [u"user"]
template_name = u"profiles/detail.html"

PrefetchRelatedMixin

A simple mixin which allows you to specify a list or tuple of reverse foreign key or ManyToMany fields to perform a
prefetch_related on. See Django’s docs for more information on prefetch_related.

3.3. SelectRelatedMixin 17

https://docs.djangoproject.com/en/1.5/ref/models/querysets/#select-related
https://docs.djangoproject.com/en/1.5/ref/models/querysets/#select-related
https://docs.djangoproject.com/en/1.5/ref/models/querysets/#prefetch-related
https://docs.djangoproject.com/en/1.5/ref/models/querysets/#prefetch-related

django-braces Documentation, Release 1.4.0

views.py
from django.contrib.auth.models import User
from django.views.generic import DetailView

from braces.views import PrefetchRelatedMixin

class UserView(PrefetchRelatedMixin, DetailView):
model = User
prefetch_related = [u"post_set"] # where the Post model has an FK to the User

→˓model as an author.
template_name = u"users/detail.html"

JSONResponseMixin

Changed in version 1.1: render_json_response now accepts a status_code keyword argument.
json_dumps_kwargs class-attribute and get_json_dumps_kwargs method to provide arguments to the
json.dumps() method.

A simple mixin to handle very simple serialization as a response to the browser.

views.py
from django.views.generic import DetailView

from braces.views import JSONResponseMixin

class UserProfileAJAXView(JSONResponseMixin, DetailView):
model = Profile
json_dumps_kwargs = {u"indent": 2}

def get(self, request, *args, **kwargs):
self.object = self.get_object()

context_dict = {
u"name": self.object.user.name,
u"location": self.object.location

}

return self.render_json_response(context_dict)

You can additionally use the AjaxResponseMixin

views.py
from django.views import DetailView

from braces import views

class UserProfileView(views.JSONResponseMixin,
views.AjaxResponseMixin,
DetailView):

model = Profile

def get_ajax(self, request, *args, **kwargs):
return self.render_json_object_response(self.get_object())

18 Chapter 3. Other Mixins

django-braces Documentation, Release 1.4.0

The JSONResponseMixin provides a class-level variable to control the response type as well. By default it is applica-
tion/json, but you can override that by providing the content_type variable a different value or, programmatically, by
overriding the get_content_type() method.

from django.views import DetailView

from braces.views import JSONResponseMixin

class UserProfileAJAXView(JSONResponseMixin, DetailView):
content_type = u"application/javascript"
model = Profile

def get(self, request, *args, **kwargs):
self.object = self.get_object()

context_dict = {
u"name": self.object.user.name,
u"location": self.object.location

}

return self.render_json_response(context_dict)

def get_content_type(self):
Shown just for illustrative purposes
return u"application/javascript"

JsonRequestResponseMixin

New in version 1.3.

A mixin that attempts to parse the request as JSON. If the request is properly formatted, the JSON is saved to self.
request_json as a Python object. request_json will be None for imparsible requests.

To catch requests that aren’t JSON-formatted, set the class attribute require_json to True.

Override the class attribute error_response_dict to customize the default error message.

It extends JSONResponseMixin, so those utilities are available as well.

Note: To allow public access to your view, you’ll need to use the csrf_exempt decorator or CsrfExemptMixin.

from django.utils.translation import ugettext_lazy as _
from django.views.generic import View

from braces import views

class SomeView(views.CsrfExemptMixin, views.JsonRequestResponseMixin, View):
require_json = True

def post(self, request, *args, **kwargs):
try:

burrito = self.request_json[u"burrito"]
toppings = self.request_json[u"toppings"]

except KeyError:

3.6. JsonRequestResponseMixin 19

django-braces Documentation, Release 1.4.0

error_dict = {u"message":
_(u"your order must include a burrito AND toppings")}

return self.render_bad_request_response(error_dict)
place_order(burrito, toppings)
return self.render_json_response(

{u"message": _(u"Your order has been placed!")})

AjaxResponseMixin

This mixin provides hooks for altenate processing of AJAX requests based on HTTP verb.

To control AJAX-specific behavior, override get_ajax, post_ajax, put_ajax, or delete_ajax. All four
methods take request, *args, and **kwargs like the standard view methods.

views.py
from django.views.generic import View

from braces import views

class SomeView(views.JSONResponseMixin, views.AjaxResponseMixin, View):
def get_ajax(self, request, *args, **kwargs):

json_dict = {
'name': "Benny's Burritos",
'location': "New York, NY"

}
return self.render_json_response(json_dict)

Note: This mixin is only useful if you need to have behavior in your view fork based on request.is_ajax().

OrderableListMixin

New in version 1.1.

A mixin to allow easy ordering of your queryset basing on the GET parameters. Works with ListView.

To use it, define columns that the data can be ordered by, as well as the default column to order by in your view. This
can be done either by simply setting the class attributes:

views.py
from django.views import ListView

from braces.views import OrderableListMixin

class OrderableListView(OrderableListMixin, ListView):
model = Article
orderable_columns = (u"id", u"title",)
orderable_columns_default = u"id"

Or by using similarly-named methods to set the ordering constraints more dynamically:

20 Chapter 3. Other Mixins

django-braces Documentation, Release 1.4.0

views.py
from django.views import ListView

from braces.views import OrderableListMixin

class OrderableListView(OrderableListMixin, ListView):
model = Article

def get_orderable_columns(self):
return an iterable
return (u"id", u"title",)

def get_orderable_columns_default(self):
return a string
return u"id"

The orderable_columns restriction is here in order to stop your users from launching inefficient queries, like
ordering by binary columns.

OrderableListMixin will order your queryset basing on following GET params:

• order_by: column name, e.g. "title"

• ordering: "asc" (default) or "desc"

Example url: http://127.0.0.1:8000/articles/?order_by=title&ordering=asc

CanonicalSlugDetailMixin

New in version 1.3.

A mixin that enforces a canonical slug in the URL. Works with DetailView.

If a urlpattern takes a object’s pk and slug as arguments and the slug URL argument does not equal the
object’s canonical slug, this mixin will redirect to the URL containing the canonical slug.

To use it, the urlpattern must accept both a pk and slug argument in its regex:

urls.py
urlpatterns = patterns('',

url(r"^article/(?P<pk>\d+)-(?P<slug>[-\w]+)$")
ArticleView.as_view(),
"view_article"

)

Then create a standard DetailView that inherits this mixin:

class ArticleView(CanonicalSlugDetailMixin, DetailView):
model = Article

Now, given an Article object with {pk: 1, slug: 'hello-world'}, the URL
http://127.0.0.1:8000/article/1-goodbye-moon will redirect to http://127.0.0.1:8000/article/1-hello-world with
the HTTP status code 301 Moved Permanently. Any other non-canonical slug, not just ‘goodbye-moon’, will trigger
the redirect as well.

Control the canonical slug by either implementing the method get_canonical_slug() on the model class:

3.9. CanonicalSlugDetailMixin 21

django-braces Documentation, Release 1.4.0

class Article(models.Model):
blog = models.ForeignKey('Blog')
slug = models.SlugField()

def get_canonical_slug(self):
return "{0}-{1}".format(self.blog.get_canonical_slug(), self.slug)

Or by overriding the get_canonical_slug() method on the view:

class ArticleView(CanonicalSlugDetailMixin, DetailView):
model = Article

def get_canonical_slug():
import codecs
return codecs.encode(self.get_object().slug, "rot_13")

Given the same Article as before, this will generate urls of http://127.0.0.1:8000/article/1-my-blog-hello-world and
http://127.0.0.1:8000/article/1-uryyb-jbeyq, respectively.

MessageMixin

New in version 1.4.

A mixin that adds a messages attribute on the view which acts as a wrapper to django.contrib.messages
and passes the request object automatically.

Warning: If you’re using Django 1.4, then the message attribute is only available after the base
view’s dispatch method has been called (so our second example would not work for instance).

from django.views.generic import TemplateView

from braces.views import MessageMixin

class MyView(MessageMixin, TemplateView):
"""
This view will add a debug message which can then be displayed
in the template.
"""
template_name = "my_template.html"

def get(self, request, *args, **kwargs):
self.messages.debug("This is a debug message.")
return super(MyView, self).get(request, *args, **kwargs)

from django.contrib import messages
from django.views.generic import TemplateView

from braces.views import MessageMixin

class OnlyWarningView(MessageMixin, TemplateView):
"""

22 Chapter 3. Other Mixins

django-braces Documentation, Release 1.4.0

This view will only show messages that have a level
above `warning`.
"""
template_name = "my_template.html"

def dispatch(self, request, *args, **kwargs):
self.messages.set_level(messages.WARNING)
return super(OnlyWarningView, self).dispatch(request, *args, **kwargs)

AllVerbsMixin

New in version 1.4.

This mixin allows you to specify a single method that will response to all HTTP verbs, making a class-based view
behave much like a function-based view.

from django.views import TemplateView

from braces.views import AllVerbsMixin

class JustShowItView(AllVerbsMixin, TemplateView):
template_name = "just/show_it.html"

def all(self, request, *args, **kwargs):
return super(JustShowItView, self).get(request, *args, **kwargs)

If you need to change the name of the method called, provide a new value to the all_handler attribute (default is
'all')

View our Changelog

Want to contribute?

3.11. AllVerbsMixin 23

django-braces Documentation, Release 1.4.0

24 Chapter 3. Other Mixins

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

25

	Access Mixins
	LoginRequiredMixin
	PermissionRequiredMixin
	MultiplePermissionsRequiredMixin
	GroupRequiredMixin
	UserPassesTestMixin
	SuperuserRequiredMixin
	AnonymousRequiredMixin
	StaffuserRequiredMixin

	Form Mixins
	CsrfExemptMixin
	UserFormKwargsMixin
	UserKwargModelFormMixin
	SuccessURLRedirectListMixin
	FormValidMessageMixin
	FormInvalidMessageMixin
	FormMessagesMixin

	Other Mixins
	SetHeadlineMixin
	StaticContextMixin
	SelectRelatedMixin
	PrefetchRelatedMixin
	JSONResponseMixin
	JsonRequestResponseMixin
	AjaxResponseMixin
	OrderableListMixin
	CanonicalSlugDetailMixin
	MessageMixin
	AllVerbsMixin

	Indices and tables

