

 Navigation

 	
 index

 	django-braces 0.2.3 documentation

Welcome to django-braces’s documentation!

You can view the code of our project or fork it and add your own mixins (please, send them back to us), on Github [https://github.com/brack3t/django-braces].

LoginRequiredMixin

This mixin is rather simple and is generally the first inherited class in any of our views. If we don’t have an authenticated user
there’s no need to go any further. If you’ve used Django before you are probably familiar with the login_required decorator.
All we are doing here is requiring a user to be authenticated to be able to get to this view.

While this doesn’t look like much, it frees us up from having to manually overload the dispatch method on every single view that
requires a user to be authenticated. If that’s all that is needed on this view, we just saved 3 lines of code. Example usage below.

Note

As of version 1.0, the LoginRequiredMixin has been rewritten to behave like the rest of the access mixins. It now accepts login_url, redirect_field_name
and raise_exception.

from django.views.generic import TemplateView

from braces.views import LoginRequiredMixin

class SomeSecretView(LoginRequiredMixin, TemplateView):
 template_name = "path/to/template.html"

 #optional
 login_url = "/signup/"
 redirect_field_name = "hollaback"
 raise_exception = True

 def get(self, request):
 return self.render_to_response({})

PermissionRequiredMixin

This mixin was originally written, I believe, by Daniel Sokolowski [https://github.com/danols] (code here [https://github.com/lukaszb/django-guardian/issues/48]), but we have updated it to eliminate an unneeded render if the permissions check fails.

Rather than overloading the dispatch method manually on every view that needs to check for the existence of a permission, we inherit this class
and set the permission_required class attribute on our view. If you don’t specify permission_required on
your view, an ImproperlyConfigured exception is raised reminding you that you haven’t set it.

The one limitation of this mixin is that it can only accept a single permission. If you need multiple permissions use MultiplePermissionsRequiredMixin.

In our normal use case for this mixin, LoginRequiredMixin comes first, then the PermissionRequiredMixin. If we
don’t have an authenticated user, there is no sense in checking for any permissions.

Note

If you are using Django’s built in auth system, superusers automatically have all permissions in your system.

from braces.views import LoginRequiredMixin, PermissionRequiredMixin

class SomeProtectedView(LoginRequiredMixin, PermissionRequiredMixin, TemplateView):
 permission_required = "auth.change_user"
 template_name = "path/to/template.html"

 #optional
 login_url = "/signup/"
 redirect_field_name = "hollaback"
 raise_exception = True

MultiplePermissionsRequiredMixin

The multiple permissions required view mixin is a more powerful version of the PermissionRequiredMixin.
This view mixin can handle multiple permissions by setting the mandatory permissions attribute as a dict
with the keys any and/or all to a list/tuple of permissions.
The all key requires the request.user to have all of the specified permissions.
The any key requires the request.user to have at least ONE of the specified permissions.

If you only need to check a single permission, the PermissionRequiredMixin is all you need.

Note

If you are using Django’s built in auth system, superusers automatically have all permissions in your system.

from braces.views import LoginRequiredMixin, MultiplePermissionsRequiredMixin

class SomeProtectedView(LoginRequiredMixin, MultiplePermissionsRequiredMixin,
 TemplateView):

 #required
 permissions = {
 "all": ("blog.add_post", "blog.change_post"),
 "any": ("blog.delete_post", "user.change_user")
 }

 #optional
 login_url = "/signup/"
 redirect_field_name = "hollaback"
 raise_exception = True

SuperuserRequiredMixin

Another permission-based mixin. This is specifically for requiring a user to be a superuser. Comes in handy for tools that only privileged
users should have access to.

from braces.views import LoginRequiredMixin, SuperuserRequiredMixin

class SomeSuperuserView(LoginRequiredMixin, SuperuserRequiredMixin, TemplateView):
 template_name = "path/to/template.html"

 #optional
 login_url = "/signup/"
 redirect_field_name = "hollaback"
 raise_exception = True

StaffuserRequiredMixin

Similar to SuperuserRequiredMixin, this mixin allows you to require a user with is_staff set to True.

from braces.views import LoginRequiredMixin, StaffuserRequiredMixin

class SomeStaffuserView(LoginRequiredMixin, StaffuserRequiredMixin, TemplateView):
 template_name = "path/to/template.html"

 #optional
 login_url = "/signup/"
 redirect_field_name = "hollaback"
 raise_exception = True

UserFormKwargsMixin

In our clients CMS, we have a lot of form-based views that require a user to be passed in for permission-based form tools. For example,
only superusers can delete or disable certain objects. To custom tailor the form for users, we have to pass that user instance into the form
and based on their permission level, change certain fields or add specific options within the forms __init__ method.

This mixin automates the process of overloading the get_form_kwargs (this method is available in any generic view which handles a form) method
and stuffs the user instance into the form kwargs. We can then pop the user off in the form and do with it what we need. Always remember
to pop the user from the kwargs before calling super on your form, otherwise the form gets an unexpected keyword argument and everything
blows up. Example usage:

from django.views.generic import CreateView

from braces.views import LoginRequiredMixin, UserFormKwargsMixin
from next.example import UserForm

class SomeSecretView(LoginRequiredMixin, UserFormKwargsMixin,
 TemplateView):

 form_class = UserForm
 model = User
 template_name = "path/to/template.html"

This obviously pairs very nicely with the following Form mixin.

UserKwargModelFormMixin

The UserKwargModelFormMixin is a new form mixin we just implemented this week to go along with our UserFormKwargsMixin.
This becomes the first inherited class of our forms that receive the user keyword argument. With this mixin, we have automated
the popping off of the keyword argument in our form and no longer have to do it manually on every form that works this way.
While this may be overkill for a weekend project, for us, it speeds up adding new features. Example usage:

from braces.forms import UserKwargModelFormMixin

class UserForm(UserKwargModelFormMixin, forms.ModelForm):
 class Meta:
 model = User

 def __init__(self, *args, **kwargs):
 super(UserForm, self).__init__(*args, **kwargs)

 if not self.user.is_superuser:
 del self.fields["group"]

SuccessURLRedirectListMixin

The SuccessURLRedirectListMixin is a bit more tailored to how we handle CRUD [http://en.wikipedia.org/wiki/Create,_read,_update_and_delete] within our CMS. Our CMS’s workflow, by design,
redirects the user to the ListView for whatever model they are working with, whether they are creating a new instance, editing
an existing one or deleting one. Rather than having to override get_success_url on every view, we simply use this mixin and pass it
a reversible route name. Example:

urls.py
url(r"^users/$", UserListView.as_view(), name="cms_users_list"),

views.py
from braces.views import (LoginRequiredMixin, PermissionRequiredMixin,
 SuccessURLRedirectListMixin)

class UserCreateView(LoginRequiredMixin, PermissionRequiredMixin,
 SuccessURLRedirectListMixin, CreateView):

 form_class = UserForm
 model = User
 permission_required = "auth.add_user"
 success_list_url = "cms_users_list"
 ...

SetHeadlineMixin

The SetHeadlineMixin is a newer edition to our client’s CMS. It allows us to statically or programmatically set the headline of any
of our views. We like to write as few templates as possible, so a mixin like this helps us reuse generic templates. Its usage is amazingly
straightforward and works much like Django’s built-in get_queryset method. This mixin has two ways of being used.

Static Example

from braces.views import SetHeadlineMixin

class HeadlineView(SetHeadlineMixin, TemplateView):
 headline = "This is our headline"
 template_name = "path/to/template.html"

Dynamic Example

from datetime import date

from braces.views import SetHeadlineMixin

class HeadlineView(SetHeadlineMixin, TemplateView):
 template_name = "path/to/template.html"

 def get_headline(self):
 return u"This is our headline for %s" % date.today().isoformat()

In both usages, in the template, just print out {{ headline }} to show the generated headline.

CreateAndRedirectToEditView

Mostly used for CRUD, where you’re going to create an object and then move direct to the update view for that object. Your URL for the update view has to accept a PK for the object.
This mixin extends from CreateView.

Warning

This mixin is pending deprecation and will be removed in a future release.

urls.py
...
url(r"^users/create/$", UserCreateView.as_view(), name="cms_users_create"),
url(r"^users/edit/(?P<pk>\d+)/$", UserUpdateView.as_view(), name="cms_users_update"),
...

views.py
from braces.views import CreateAndRedirectToEditView

class UserCreateView(CreateAndRedirectToEditView):
 model = User
 ...

SelectRelatedMixin

A simple mixin which allows you to specify a list or tuple of foreign key fields to perform a select_related [https://docs.djangoproject.com/en/1.5/ref/models/querysets/#select-related] on.
See Django’s docs for more information on select_related [https://docs.djangoproject.com/en/1.5/ref/models/querysets/#select-related].

views.py
from django.views.generic import DetailView

from braces.views import SelectRelatedMixin

from profiles.models import Profile

class UserProfileView(SelectRelatedMixin, DetailView):
 model = Profile
 select_related = ["user"]
 template_name = "profiles/detail.html"

PrefetchRelatedMixin

A simple mixin which allows you to specify a list or tuple of reverse foreign key or ManyToMany fields to perform a prefetch_related [https://docs.djangoproject.com/en/1.5/ref/models/querysets/#prefetch-related] on.
See Django’s docs for more information on prefetch_related [https://docs.djangoproject.com/en/1.5/ref/models/querysets/#prefetch-related].

views.py
from django.contrib.auth.models import User
from django.views.generic import DetailView

from braces.views import PrefetchRelatedMixin

class UserView(PrefetchRelatedMixin, DetailView):
 model = User
 prefetch_related = ["post_set"] # where the Post model has an FK to the User model as an author.
 template_name = "users/detail.html"

StaffuserRequiredMixin

A mixin to support those cases where you want to give staff access to a view.

views.py
from django.views.generic import DetailView

from braces.views import StaffuserRequiredMixin

class SomeStaffuserView(LoginRequiredMixin, StaffuserRequiredMixin, TemplateView):
 template_name = "path/to/template.html"

JSONResponseMixin

A simple mixin to handle very simple serialization as a response to the browser.

views.py
from django.views.generic import DetailView

from braces.views import JSONResponseMixin

class UserProfileAJAXView(JSONResponseMixin, DetailView):
 model = Profile

 def get(self, request, *args, **kwargs):
 self.object = self.get_object()

 context_dict = {
 'name': self.object.user.name,
 'location': self.object.location
 }

 return self.render_json_response(context_dict)

You can additionally use the AjaxResponseMixin

views.py
from braces.views import AjaxResponseMixin

class UserProfileView(JSONResponseMixin, AjaxResponseMixin, DetailView):
 model = Profile

 def get_ajax(self, request, *args, **kwargs):
 return self.render_json_object_response(self.get_object())

The JSONResponseMixin provides a class-level variable to control the response
type as well. By default it is application/json, but you can override that by
providing the content_type variable a different value or, programmatically, by
overriding the get_content_type() method.

from braces.views import JSONResponseMixin

class UserProfileAJAXView(JSONResponseMixin, DetailView):
 content_type = 'application/javascript'
 model = Profile

 def get(self, request, *args, **kwargs):
 self.object = self.get_object()

 context_dict = {
 'name': self.object.user.name,
 'location': self.object.location
 }

 return self.render_json_response(context_dict)

 def get_content_type(self):
 # Shown just for illustrative purposes
 return 'application/javascript'

AjaxResponseMixin

A mixin to allow you to provide alternative methods for handling AJAX requests.

To control AJAX-specific behavior, override get_ajax, post_ajax, put_ajax,
or delete_ajax. All four methods take request, *args, and **kwargs like
the standard view methods.

views.py
from django.views.generic import View

from braces.views import AjaxResponseMixin, JSONResponseMixin

class SomeView(JSONResponseMixin, AjaxResponseMixin, View):
 def get_ajax(self, request, *args, **kwargs):
 json_dict = {
 'name': "Benny's Burritos",
 'location': "New York, NY"
 }
 return self.render_json_response(json_dict)

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Kenneth Love and Chris Jones.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v1.1.0

 	v1.0.0

 Navigation

 	
 index

 	django-braces 0.2.3 documentation

Index

 Copyright 2012, Kenneth Love and Chris Jones.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 	v1.1.0

 	v1.0.0

 _static/down.png

_static/plus.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		django-braces 0.2.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Kenneth Love and Chris Jones.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		v1.1.0

 		v1.0.0

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/up.png

