
django-braces Documentation
Release 0.2.3

Kenneth Love and Chris Jones

July 26, 2013

CONTENTS

i

ii

django-braces Documentation, Release 0.2.3

You can view the code of our project or fork it and add your own mixins (please, send them back to us), on Github.

CONTENTS 1

https://github.com/brack3t/django-braces

django-braces Documentation, Release 0.2.3

2 CONTENTS

CHAPTER

ONE

LOGINREQUIREDMIXIN

This mixin is rather simple and is generally the first inherited class in any of our views. If we don’t have an au-
thenticated user there’s no need to go any further. If you’ve used Django before you are probably familiar with the
login_required decorator. All we are doing here is requiring a user to be authenticated to be able to get to this
view.

While this doesn’t look like much, it frees us up from having to manually overload the dispatch method on every single
view that requires a user to be authenticated. If that’s all that is needed on this view, we just saved 3 lines of code.
Example usage below.

Note: As of version 1.0, the LoginRequiredMixin has been rewritten to behave like the rest of the
access mixins. It now accepts login_url, redirect_field_name and raise_exception.

from django.views.generic import TemplateView

from braces.views import LoginRequiredMixin

class SomeSecretView(LoginRequiredMixin, TemplateView):
template_name = "path/to/template.html"

#optional
login_url = "/signup/"
redirect_field_name = "hollaback"
raise_exception = True

def get(self, request):
return self.render_to_response({})

3

django-braces Documentation, Release 0.2.3

4 Chapter 1. LoginRequiredMixin

CHAPTER

TWO

PERMISSIONREQUIREDMIXIN

This mixin was originally written, I believe, by Daniel Sokolowski (code here), but we have updated it to eliminate an
unneeded render if the permissions check fails.

Rather than overloading the dispatch method manually on every view that needs to check for the existence of a
permission, we inherit this class and set the permission_required class attribute on our view. If you don’t
specify permission_required on your view, an ImproperlyConfigured exception is raised reminding
you that you haven’t set it.

The one limitation of this mixin is that it can only accept a single permission. If you need multiple permissions use
MultiplePermissionsRequiredMixin.

In our normal use case for this mixin, LoginRequiredMixin comes first, then the
PermissionRequiredMixin. If we don’t have an authenticated user, there is no sense in checking for
any permissions.

Note: If you are using Django’s built in auth system, superusers automatically have all permissions
in your system.

from braces.views import LoginRequiredMixin, PermissionRequiredMixin

class SomeProtectedView(LoginRequiredMixin, PermissionRequiredMixin, TemplateView):
permission_required = "auth.change_user"
template_name = "path/to/template.html"

#optional
login_url = "/signup/"
redirect_field_name = "hollaback"
raise_exception = True

5

https://github.com/danols
https://github.com/lukaszb/django-guardian/issues/48

django-braces Documentation, Release 0.2.3

6 Chapter 2. PermissionRequiredMixin

CHAPTER

THREE

MULTIPLEPERMISSIONSREQUIREDMIXIN

The multiple permissions required view mixin is a more powerful version of the PermissionRequiredMixin.
This view mixin can handle multiple permissions by setting the mandatory permissions attribute as a dict with the
keys any and/or all to a list/tuple of permissions. The all key requires the request.user to have all of the specified
permissions. The any key requires the request.user to have at least ONE of the specified permissions.

If you only need to check a single permission, the PermissionRequiredMixin is all you need.

Note: If you are using Django’s built in auth system, superusers automatically have all permissions
in your system.

from braces.views import LoginRequiredMixin, MultiplePermissionsRequiredMixin

class SomeProtectedView(LoginRequiredMixin, MultiplePermissionsRequiredMixin,
TemplateView):

#required
permissions = {

"all": ("blog.add_post", "blog.change_post"),
"any": ("blog.delete_post", "user.change_user")

}

#optional
login_url = "/signup/"
redirect_field_name = "hollaback"
raise_exception = True

7

django-braces Documentation, Release 0.2.3

8 Chapter 3. MultiplePermissionsRequiredMixin

CHAPTER

FOUR

SUPERUSERREQUIREDMIXIN

Another permission-based mixin. This is specifically for requiring a user to be a superuser. Comes in handy for tools
that only privileged users should have access to.

from braces.views import LoginRequiredMixin, SuperuserRequiredMixin

class SomeSuperuserView(LoginRequiredMixin, SuperuserRequiredMixin, TemplateView):
template_name = "path/to/template.html"

#optional
login_url = "/signup/"
redirect_field_name = "hollaback"
raise_exception = True

9

django-braces Documentation, Release 0.2.3

10 Chapter 4. SuperuserRequiredMixin

CHAPTER

FIVE

STAFFUSERREQUIREDMIXIN

Similar to SuperuserRequiredMixin, this mixin allows you to require a user with is_staff set to True.

from braces.views import LoginRequiredMixin, StaffuserRequiredMixin

class SomeStaffuserView(LoginRequiredMixin, StaffuserRequiredMixin, TemplateView):
template_name = "path/to/template.html"

#optional
login_url = "/signup/"
redirect_field_name = "hollaback"
raise_exception = True

11

django-braces Documentation, Release 0.2.3

12 Chapter 5. StaffuserRequiredMixin

CHAPTER

SIX

USERFORMKWARGSMIXIN

In our clients CMS, we have a lot of form-based views that require a user to be passed in for permission-based form
tools. For example, only superusers can delete or disable certain objects. To custom tailor the form for users, we
have to pass that user instance into the form and based on their permission level, change certain fields or add specific
options within the forms __init__ method.

This mixin automates the process of overloading the get_form_kwargs (this method is available in any generic
view which handles a form) method and stuffs the user instance into the form kwargs. We can then pop the user off in
the form and do with it what we need. Always remember to pop the user from the kwargs before calling super on
your form, otherwise the form gets an unexpected keyword argument and everything blows up. Example usage:

from django.views.generic import CreateView

from braces.views import LoginRequiredMixin, UserFormKwargsMixin
from next.example import UserForm

class SomeSecretView(LoginRequiredMixin, UserFormKwargsMixin,
TemplateView):

form_class = UserForm
model = User
template_name = "path/to/template.html"

This obviously pairs very nicely with the following Form mixin.

13

django-braces Documentation, Release 0.2.3

14 Chapter 6. UserFormKwargsMixin

CHAPTER

SEVEN

USERKWARGMODELFORMMIXIN

The UserKwargModelFormMixin is a new form mixin we just implemented this week to go along with our
UserFormKwargsMixin. This becomes the first inherited class of our forms that receive the user keyword argu-
ment. With this mixin, we have automated the popping off of the keyword argument in our form and no longer have to
do it manually on every form that works this way. While this may be overkill for a weekend project, for us, it speeds
up adding new features. Example usage:

from braces.forms import UserKwargModelFormMixin

class UserForm(UserKwargModelFormMixin, forms.ModelForm):
class Meta:

model = User

def __init__(self, *args, **kwargs):
super(UserForm, self).__init__(*args, **kwargs)

if not self.user.is_superuser:
del self.fields["group"]

15

django-braces Documentation, Release 0.2.3

16 Chapter 7. UserKwargModelFormMixin

CHAPTER

EIGHT

SUCCESSURLREDIRECTLISTMIXIN

The SuccessURLRedirectListMixin is a bit more tailored to how we handle CRUD within our CMS. Our
CMS’s workflow, by design, redirects the user to the ListView for whatever model they are working with,
whether they are creating a new instance, editing an existing one or deleting one. Rather than having to override
get_success_url on every view, we simply use this mixin and pass it a reversible route name. Example:

urls.py
url(r"^users/$", UserListView.as_view(), name="cms_users_list"),

views.py
from braces.views import (LoginRequiredMixin, PermissionRequiredMixin,

SuccessURLRedirectListMixin)

class UserCreateView(LoginRequiredMixin, PermissionRequiredMixin,
SuccessURLRedirectListMixin, CreateView):

form_class = UserForm
model = User
permission_required = "auth.add_user"
success_list_url = "cms_users_list"
...

17

http://en.wikipedia.org/wiki/Create,_read,_update_and_delete

django-braces Documentation, Release 0.2.3

18 Chapter 8. SuccessURLRedirectListMixin

CHAPTER

NINE

SETHEADLINEMIXIN

The SetHeadlineMixin is a newer edition to our client’s CMS. It allows us to statically or programmatically set
the headline of any of our views. We like to write as few templates as possible, so a mixin like this helps us reuse
generic templates. Its usage is amazingly straightforward and works much like Django’s built-in get_queryset
method. This mixin has two ways of being used.

9.1 Static Example

from braces.views import SetHeadlineMixin

class HeadlineView(SetHeadlineMixin, TemplateView):
headline = "This is our headline"
template_name = "path/to/template.html"

9.2 Dynamic Example

from datetime import date

from braces.views import SetHeadlineMixin

class HeadlineView(SetHeadlineMixin, TemplateView):
template_name = "path/to/template.html"

def get_headline(self):
return u"This is our headline for %s" % date.today().isoformat()

In both usages, in the template, just print out {{ headline }} to show the generated headline.

19

django-braces Documentation, Release 0.2.3

20 Chapter 9. SetHeadlineMixin

CHAPTER

TEN

CREATEANDREDIRECTTOEDITVIEW

Mostly used for CRUD, where you’re going to create an object and then move direct to the update view for that object.
Your URL for the update view has to accept a PK for the object. This mixin extends from CreateView.

Warning: This mixin is pending deprecation and will be removed in a future release.

urls.py
...
url(r"^users/create/$", UserCreateView.as_view(), name="cms_users_create"),
url(r"^users/edit/(?P<pk>\d+)/$", UserUpdateView.as_view(), name="cms_users_update"),
...

views.py
from braces.views import CreateAndRedirectToEditView

class UserCreateView(CreateAndRedirectToEditView):
model = User
...

21

django-braces Documentation, Release 0.2.3

22 Chapter 10. CreateAndRedirectToEditView

CHAPTER

ELEVEN

SELECTRELATEDMIXIN

A simple mixin which allows you to specify a list or tuple of foreign key fields to perform a select_related on. See
Django’s docs for more information on select_related.

views.py
from django.views.generic import DetailView

from braces.views import SelectRelatedMixin

from profiles.models import Profile

class UserProfileView(SelectRelatedMixin, DetailView):
model = Profile
select_related = ["user"]
template_name = "profiles/detail.html"

23

https://docs.djangoproject.com/en/1.5/ref/models/querysets/#select-related
https://docs.djangoproject.com/en/1.5/ref/models/querysets/#select-related

django-braces Documentation, Release 0.2.3

24 Chapter 11. SelectRelatedMixin

CHAPTER

TWELVE

PREFETCHRELATEDMIXIN

A simple mixin which allows you to specify a list or tuple of reverse foreign key or ManyToMany fields to perform a
prefetch_related on. See Django’s docs for more information on prefetch_related.

views.py
from django.contrib.auth.models import User
from django.views.generic import DetailView

from braces.views import PrefetchRelatedMixin

class UserView(PrefetchRelatedMixin, DetailView):
model = User
prefetch_related = ["post_set"] # where the Post model has an FK to the User model as an author.
template_name = "users/detail.html"

25

https://docs.djangoproject.com/en/1.5/ref/models/querysets/#prefetch-related
https://docs.djangoproject.com/en/1.5/ref/models/querysets/#prefetch-related

django-braces Documentation, Release 0.2.3

26 Chapter 12. PrefetchRelatedMixin

CHAPTER

THIRTEEN

STAFFUSERREQUIREDMIXIN

A mixin to support those cases where you want to give staff access to a view.

views.py
from django.views.generic import DetailView

from braces.views import StaffuserRequiredMixin

class SomeStaffuserView(LoginRequiredMixin, StaffuserRequiredMixin, TemplateView):
template_name = "path/to/template.html"

27

django-braces Documentation, Release 0.2.3

28 Chapter 13. StaffuserRequiredMixin

CHAPTER

FOURTEEN

JSONRESPONSEMIXIN

A simple mixin to handle very simple serialization as a response to the browser.

views.py
from django.views.generic import DetailView

from braces.views import JSONResponseMixin

class UserProfileAJAXView(JSONResponseMixin, DetailView):
model = Profile

def get(self, request, *args, **kwargs):
self.object = self.get_object()

context_dict = {
’name’: self.object.user.name,
’location’: self.object.location

}

return self.render_json_response(context_dict)

You can additionally use the AjaxResponseMixin

views.py
from braces.views import AjaxResponseMixin

class UserProfileView(JSONResponseMixin, AjaxResponseMixin, DetailView):
model = Profile

def get_ajax(self, request, *args, **kwargs):
return self.render_json_object_response(self.get_object())

The JSONResponseMixin provides a class-level variable to control the response type as well. By default it is applica-
tion/json, but you can override that by providing the content_type variable a different value or, programmatically, by
overriding the get_content_type() method.

from braces.views import JSONResponseMixin

class UserProfileAJAXView(JSONResponseMixin, DetailView):
content_type = ’application/javascript’
model = Profile

def get(self, request, *args, **kwargs):
self.object = self.get_object()

29

django-braces Documentation, Release 0.2.3

context_dict = {
’name’: self.object.user.name,
’location’: self.object.location

}

return self.render_json_response(context_dict)

def get_content_type(self):
Shown just for illustrative purposes
return ’application/javascript’

30 Chapter 14. JSONResponseMixin

CHAPTER

FIFTEEN

AJAXRESPONSEMIXIN

A mixin to allow you to provide alternative methods for handling AJAX requests.

To control AJAX-specific behavior, override get_ajax, post_ajax, put_ajax, or delete_ajax. All four methods take
request, *args, and **kwargs like the standard view methods.

views.py
from django.views.generic import View

from braces.views import AjaxResponseMixin, JSONResponseMixin

class SomeView(JSONResponseMixin, AjaxResponseMixin, View):
def get_ajax(self, request, *args, **kwargs):

json_dict = {
’name’: "Benny’s Burritos",
’location’: "New York, NY"

}
return self.render_json_response(json_dict)

31

django-braces Documentation, Release 0.2.3

32 Chapter 15. AjaxResponseMixin

CHAPTER

SIXTEEN

INDICES AND TABLES

• genindex

• modindex

• search

33

