
django-braces Documentation
Release 1.3.0

Kenneth Love and Chris Jones

February 28, 2014

Contents

i

ii

django-braces Documentation, Release 1.3.0

You can view the code of our project or fork it and add your own mixins (please, send them back to us), on Github.

Contents 1

https://github.com/brack3t/django-braces

django-braces Documentation, Release 1.3.0

2 Contents

CHAPTER 1

Access Mixins

These mixins all control a user’s access to a given view. Since they all extend the AccessMixin, the implement a
common API that includes the following class attributes:

login_url = settings.LOGIN_URL
redirect_field_name = REDIRECT_FIELD_NAME
raise_exception = False

The raise_exception attribute will cause the view to raise a PermissionDenied exception if it is set to
True, otherwise the view will redirect to the login view provided.

Contents

• Access Mixins
– LoginRequiredMixin
– PermissionRequiredMixin
– MultiplePermissionsRequiredMixin
– GroupRequiredMixin

* Standard Django Usage
* Custom Group Usage

– UserPassesTestMixin
– SuperuserRequiredMixin
– StaffuserRequiredMixin

1.1 LoginRequiredMixin

This mixin is rather simple and is generally the first inherited class in any of our views. If we don’t have an au-
thenticated user there’s no need to go any further. If you’ve used Django before you are probably familiar with the
login_required decorator. All we are doing here is requiring a user to be authenticated to be able to get to this
view.

While this doesn’t look like much, it frees us up from having to manually overload the dispatch method on every single
view that requires a user to be authenticated. If that’s all that is needed on this view, we just saved 3 lines of code.
Example usage below.

Note: As of version 1.0, the LoginRequiredMixin has been rewritten to behave like the rest of the
access mixins. It now accepts login_url, redirect_field_name and raise_exception.

3

django-braces Documentation, Release 1.3.0

Note: This should be the left-most mixin of a view, except when combined with CsrfExemptMixin -
which in that case should be the left-most mixin.

from django.views.generic import TemplateView

from braces.views import LoginRequiredMixin

class SomeSecretView(LoginRequiredMixin, TemplateView):
template_name = "path/to/template.html"

#optional
login_url = "/signup/"
redirect_field_name = "hollaback"
raise_exception = True

def get(self, request):
return self.render_to_response({})

1.2 PermissionRequiredMixin

This mixin was originally written, I believe, by Daniel Sokolowski (code here), but we have updated it to eliminate an
unneeded render if the permissions check fails.

Rather than overloading the dispatch method manually on every view that needs to check for the existence of a
permission, we inherit this class and set the permission_required class attribute on our view. If you don’t
specify permission_required on your view, an ImproperlyConfigured exception is raised reminding
you that you haven’t set it.

The one limitation of this mixin is that it can only accept a single permission. If you need multiple permissions use
MultiplePermissionsRequiredMixin.

In our normal use case for this mixin, LoginRequiredMixin comes first, then the
PermissionRequiredMixin. If we don’t have an authenticated user, there is no sense in checking for
any permissions.

Note: If you are using Django’s built in auth system, superusers automatically have all permissions
in your system.

from braces.views import LoginRequiredMixin, PermissionRequiredMixin

class SomeProtectedView(LoginRequiredMixin, PermissionRequiredMixin, TemplateView):
permission_required = "auth.change_user"
template_name = "path/to/template.html"

1.3 MultiplePermissionsRequiredMixin

The multiple permissions required view mixin is a more powerful version of the PermissionRequiredMixin.
This view mixin can handle multiple permissions by setting the mandatory permissions attribute as a dict with the
keys any and/or all to a list/tuple of permissions. The all key requires the request.user to have all of the specified
permissions. The any key requires the request.user to have at least ONE of the specified permissions. If you only
need to check a single permission, the PermissionRequiredMixin is all you need.

4 Chapter 1. Access Mixins

https://github.com/danols
https://github.com/lukaszb/django-guardian/issues/48

django-braces Documentation, Release 1.3.0

Note: If you are using Django’s built in auth system, superusers automatically have all permissions
in your system.

from braces.views import LoginRequiredMixin, MultiplePermissionsRequiredMixin

class SomeProtectedView(LoginRequiredMixin,
MultiplePermissionsRequiredMixin,
TemplateView):

#required
permissions = {

"all": ("blog.add_post", "blog.change_post"),
"any": ("blog.delete_post", "user.change_user")

}

1.4 GroupRequiredMixin

New in version 1.2.

The group required view mixin ensures that the requesting user is in the group or groups specified. This view mixin
can handle multiple groups by setting the mandatory group_required attribute as a list or tuple.

Note: The mixin assumes you’re using Django’s default Group model and that your user model
provides groups as a ManyToMany relationship. If this is not the case, you’ll need to override
check_membership in the mixin to handle your custom set up.

1.4.1 Standard Django Usage

from braces.views import GroupRequiredMixin

class SomeProtectedView(GroupRequiredMixin, TemplateView):

#required
group_required = u’editors’

1.4.2 Custom Group Usage

from braces.views import GroupRequiredMixin

class SomeProtectedView(GroupRequiredMixin, TemplateView):

#required
group_required = u’editors’

def check_membership(self, group):
...
Check some other system for group membership
if user_in_group:

1.4. GroupRequiredMixin 5

django-braces Documentation, Release 1.3.0

return True
else:

return False

1.5 UserPassesTestMixin

New in version dev.

Mixin that reimplements the user_passes_test decorator. This is helpful for much more complicated cases than check-
ing if user is_superuser (for example if their email is from specific a domain).

from braces.views import UserPassesTestMixin

class SomeUserPassView(UserPassesTestMixin, TemplateView):
def test_func(self, user):

return (user.is_staff and not user.is_superuser
and user.email.endswith("mydomain.com"))

1.6 SuperuserRequiredMixin

Another permission-based mixin. This is specifically for requiring a user to be a superuser. Comes in handy for tools
that only privileged users should have access to.

from braces.views import LoginRequiredMixin, SuperuserRequiredMixin

class SomeSuperuserView(LoginRequiredMixin, SuperuserRequiredMixin, TemplateView):
template_name = "path/to/template.html"

1.7 StaffuserRequiredMixin

Similar to SuperuserRequiredMixin, this mixin allows you to require a user with is_staff set to True.

from braces.views import LoginRequiredMixin, StaffuserRequiredMixin

class SomeStaffuserView(LoginRequiredMixin, StaffuserRequiredMixin, TemplateView):
template_name = "path/to/template.html"

6 Chapter 1. Access Mixins

CHAPTER 2

Form Mixins

All of these mixins, with one exception, modify how forms are handled within views. The
UserKwargModelFormMixin is a mixin for use in forms to auto-pop a user kwarg.

Contents

• Form Mixins
– CsrfExemptMixin
– UserFormKwargsMixin

* Usage
– UserKwargModelFormMixin

* Usage
– SuccessURLRedirectListMixin
– FormValidMessageMixin

* Static Example
* Dynamic Example

– FormInvalidMessageMixin
* Static Example
* Dynamic Example

– FormMessagesMixin
* Static & Dynamic Example

2.1 CsrfExemptMixin

If you have Django’s CSRF protection middleware enabled you can exempt views using the csrf_exempt decorator.
This mixin exempts POST requests from the CSRF protection middleware without requiring that you decorate the
dispatch method.

Note: This should always be the left-most mixin of a view.

from django.views.generic import UpdateView

from braces.views import LoginRequiredMixin, CsrfExemptMixin

from profiles.models import Profile

7

django-braces Documentation, Release 1.3.0

class UpdateProfileView(LoginRequiredMixin, CsrfExemptMixin, UpdateView):
model = Profile

2.2 UserFormKwargsMixin

In one of our client’s CMS, we have a lot of form-based views that require a user to be passed in for permission-based
form tools. For example, only superusers can delete or disable certain objects. To custom tailor the form for users, we
have to pass that user instance into the form and based on their permission level, change certain fields or add specific
options within the forms __init__ method.

This mixin automates the process of overloading the get_form_kwargs (this method is available in any generic
view which handles a form) method and stuffs the user instance into the form kwargs. We can then pop the user off in
the form and do with it what we need. Always remember to pop the user from the kwargs before calling super on
your form, otherwise the form gets an unexpected keyword argument and everything blows up.

2.2.1 Usage

from django.views.generic import CreateView

from braces.views import LoginRequiredMixin, UserFormKwargsMixin
from next.example import UserForm

class SomeSecretView(LoginRequiredMixin, UserFormKwargsMixin,
TemplateView):

form_class = UserForm
model = User
template_name = "path/to/template.html"

This obviously pairs very nicely with the following Form mixin.

2.3 UserKwargModelFormMixin

The UserKwargModelFormMixin is a form mixin to go along with our UserFormKwargsMixin. This becomes
the first inherited class of our forms that receive the user keyword argument. With this mixin, we have automated the
popping off of the keyword argument in our form and no longer have to do it manually on every form that works this
way. While this may be overkill for a weekend project, for us, it speeds up adding new features.

2.3.1 Usage

from braces.forms import UserKwargModelFormMixin

class UserForm(UserKwargModelFormMixin, forms.ModelForm):
class Meta:

model = User

def __init__(self, *args, **kwargs):
super(UserForm, self).__init__(*args, **kwargs)

8 Chapter 2. Form Mixins

django-braces Documentation, Release 1.3.0

if not self.user.is_superuser:
del self.fields["group"]

2.4 SuccessURLRedirectListMixin

The SuccessURLRedirectListMixin is a bit more tailored to how we have handled CRUD within the CMSes
we’ve built. One CMS’s workflow, by design, redirects the user to the ListView for whatever model they are
working with, whether they are creating a new instance, editing an existing one or deleting one. Rather than having to
override get_success_url on every view, we simply use this mixin and pass it a reversible route name. Example:

urls.py
url(r"^users/$", UserListView.as_view(), name="cms_users_list"),

views.py
from braces.views import (LoginRequiredMixin, PermissionRequiredMixin,

SuccessURLRedirectListMixin)

class UserCreateView(LoginRequiredMixin, PermissionRequiredMixin,
SuccessURLRedirectListMixin, CreateView):

form_class = UserForm
model = User
permission_required = "auth.add_user"
success_list_url = "cms_users_list"
...

2.5 FormValidMessageMixin

New in version 1.2.

The FormValidMessageMixin allows you to to statically or programmatically set a message to be
returned using Django’s messages framework when the form is valid. The returned message is con-
trolled by the form_valid_message property which can either be set on the view or returned by the
get_form_valid_message method. The message is not processed until the end of the form_valid method.

Warning: This mixin requires the Django messages app to be enabled.

Note: This mixin is designed for use with Django’s generic form class-based views, e.g. FormView,
CreateView, UpdateView

2.5.1 Static Example

from django.views.generic import CreateView

from braces.views import FormValidMessageMixin

class BlogPostCreateView(FormValidMessageMixin, CreateView):

2.4. SuccessURLRedirectListMixin 9

http://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://docs.djangoproject.com/en/1.5/ref/contrib/messages/
https://docs.djangoproject.com/en/1.5/ref/contrib/messages/

django-braces Documentation, Release 1.3.0

form_class = PostForm
model = Post
form_valid_message = ’Blog post created!’

2.5.2 Dynamic Example

from django.views.generic import CreateView

from braces.views import FormValidMessageMixin

class BlogPostCreateView(FormValidMessageMixin, CreateView):
form_class = PostForm
model = Post

def get_form_valid_message(self):
return ’{0} created!’.format(self.object.title)

2.6 FormInvalidMessageMixin

New in version 1.2.

The FormInvalidMessageMixin allows you to to statically or programmatically set a message to be
returned using Django’s messages framework when the form is invalid. The returned message is con-
trolled by the form_invalid_message property which can either be set on the view or returned by the
get_form_invalid_message method. The message is not processed until the end of the form_invalid
method.

Warning: This mixin requires the Django messages app to be enabled.

Note: This mixin is designed for use with Django’s generic form class-based views, e.g. FormView,
CreateView, UpdateView

2.6.1 Static Example

from django.views.generic import CreateView

from braces.views import FormInvalidMessageMixin

class BlogPostCreateView(FormInvalidMessageMixin, CreateView):
form_class = PostForm
model = Post
form_invalid_message = ’Oh snap, something went wrong!’

2.6.2 Dynamic Example

10 Chapter 2. Form Mixins

https://docs.djangoproject.com/en/1.5/ref/contrib/messages/
https://docs.djangoproject.com/en/1.5/ref/contrib/messages/

django-braces Documentation, Release 1.3.0

from django.views.generic import CreateView

from braces.views import FormInvalidMessageMixin

class BlogPostCreateView(FormInvalidMessageMixin, CreateView):
form_class = PostForm
model = Post

def get_form_invalid_message(self):
return ’Some custom message’

2.7 FormMessagesMixin

New in version 1.2.

FormMessagesMixin is a convenience mixin which combines FormValidMessageMixin and FormInvalidMes-
sageMixin since we commonly provide messages for both states (form_valid, form_invalid).

Warning: This mixin requires the Django messages app to be enabled.

2.7.1 Static & Dynamic Example

from django.views.generic import CreateView

from braces.views import FormMessagesMixin

class BlogPostCreateView(FormMessagesMixin, CreateView):
form_class = PostForm
form_invalid_message = ’Something went wrong, post was not saved’
model = Post

def get_form_valid_message(self):
return ’{0} created!’.format(self.object.title)

2.7. FormMessagesMixin 11

https://docs.djangoproject.com/en/1.5/ref/contrib/messages/

django-braces Documentation, Release 1.3.0

12 Chapter 2. Form Mixins

CHAPTER 3

Other Mixins

These mixins handle other random bits of Django’s views, like controlling output, controlling content types, or setting
values in the context.

Contents

• Other Mixins
– SetHeadlineMixin

* Static Example
* Dynamic Example

– SelectRelatedMixin
– PrefetchRelatedMixin
– JSONResponseMixin
– JsonRequestResponseMixin
– AjaxResponseMixin
– OrderableListMixin
– CanonicalSlugDetailMixin

3.1 SetHeadlineMixin

The SetHeadlineMixin is a newer edition to our client’s CMS. It allows us to statically or programmatically set
the headline of any of our views. We like to write as few templates as possible, so a mixin like this helps us reuse
generic templates. Its usage is amazingly straightforward and works much like Django’s built-in get_queryset
method. This mixin has two ways of being used.

3.1.1 Static Example

from braces.views import SetHeadlineMixin

class HeadlineView(SetHeadlineMixin, TemplateView):
headline = "This is our headline"
template_name = "path/to/template.html"

13

django-braces Documentation, Release 1.3.0

3.1.2 Dynamic Example

from datetime import date

from braces.views import SetHeadlineMixin

class HeadlineView(SetHeadlineMixin, TemplateView):
template_name = "path/to/template.html"

def get_headline(self):
return u"This is our headline for %s" % date.today().isoformat()

In both usages, in the template, just print out {{ headline }} to show the generated headline.

3.2 SelectRelatedMixin

A simple mixin which allows you to specify a list or tuple of foreign key fields to perform a select_related on. See
Django’s docs for more information on select_related.

views.py
from django.views.generic import DetailView

from braces.views import SelectRelatedMixin

from profiles.models import Profile

class UserProfileView(SelectRelatedMixin, DetailView):
model = Profile
select_related = ["user"]
template_name = "profiles/detail.html"

3.3 PrefetchRelatedMixin

A simple mixin which allows you to specify a list or tuple of reverse foreign key or ManyToMany fields to perform a
prefetch_related on. See Django’s docs for more information on prefetch_related.

views.py
from django.contrib.auth.models import User
from django.views.generic import DetailView

from braces.views import PrefetchRelatedMixin

class UserView(PrefetchRelatedMixin, DetailView):
model = User
prefetch_related = ["post_set"] # where the Post model has an FK to the User model as an author.
template_name = "users/detail.html"

14 Chapter 3. Other Mixins

https://docs.djangoproject.com/en/1.5/ref/models/querysets/#select-related
https://docs.djangoproject.com/en/1.5/ref/models/querysets/#select-related
https://docs.djangoproject.com/en/1.5/ref/models/querysets/#prefetch-related
https://docs.djangoproject.com/en/1.5/ref/models/querysets/#prefetch-related

django-braces Documentation, Release 1.3.0

3.4 JSONResponseMixin

Changed in version 1.1: render_json_response now accepts a status_code keyword argument.
json_dumps_kwargs class-attribute and get_json_dumps_kwargs method to provide arguments to the
json.dumps() method.

A simple mixin to handle very simple serialization as a response to the browser.

views.py
from django.views.generic import DetailView

from braces.views import JSONResponseMixin

class UserProfileAJAXView(JSONResponseMixin, DetailView):
model = Profile
json_dumps_kwargs = {’indent’: 2}

def get(self, request, *args, **kwargs):
self.object = self.get_object()

context_dict = {
’name’: self.object.user.name,
’location’: self.object.location

}

return self.render_json_response(context_dict)

You can additionally use the AjaxResponseMixin

views.py
from braces.views import AjaxResponseMixin

class UserProfileView(JSONResponseMixin, AjaxResponseMixin, DetailView):
model = Profile

def get_ajax(self, request, *args, **kwargs):
return self.render_json_object_response(self.get_object())

The JSONResponseMixin provides a class-level variable to control the response type as well. By default it is applica-
tion/json, but you can override that by providing the content_type variable a different value or, programmatically, by
overriding the get_content_type() method.

from braces.views import JSONResponseMixin

class UserProfileAJAXView(JSONResponseMixin, DetailView):
content_type = ’application/javascript’
model = Profile

def get(self, request, *args, **kwargs):
self.object = self.get_object()

context_dict = {
’name’: self.object.user.name,
’location’: self.object.location

}

return self.render_json_response(context_dict)

def get_content_type(self):

3.4. JSONResponseMixin 15

django-braces Documentation, Release 1.3.0

Shown just for illustrative purposes
return ’application/javascript’

3.5 JsonRequestResponseMixin

New in version 1.3.

A mixin that attempts to parse request as JSON. If request is properly formatted, the json is saved to self.request_json
as a Python object. request_json will be None for imparsible requests.

To catch requests that aren’t JSON-formatted, set the class attribute require_json to True.

Override the class attribute error_response_dict to customize the default error message.

It extends JSONResponseMixin, so those utilities are available as well.

Note: To allow public access to your view, you’ll need to use the csrf_exempt decorator or CsrfExemptMixin.

from django.views.generic import View

from braces.views import CsrfExemptMixin, JsonRequestResponseMixin

class SomeView(CsrfExemptMixin, JsonRequestResponseMixin, View):
require_json = True

def post(self, request, *args, **kwargs):
try:

burrito = self.request_json[’burrito’]
toppings = self.request_json[’toppings’]

except:
error_dict = {’message’:

’your order must include a burrito AND toppings’}
return self.render_bad_request_response(error_dict)

place_order(burrito, toppings)
return self.render_json_response(

{’message’: ’Your order has been placed!’})

3.6 AjaxResponseMixin

A mixin to allow you to provide alternative methods for handling AJAX requests.

To control AJAX-specific behavior, override get_ajax, post_ajax, put_ajax, or delete_ajax. All four
methods take request, *args, and **kwargs like the standard view methods.

views.py
from django.views.generic import View

from braces.views import AjaxResponseMixin, JSONResponseMixin

class SomeView(JSONResponseMixin, AjaxResponseMixin, View):
def get_ajax(self, request, *args, **kwargs):

json_dict = {
’name’: "Benny’s Burritos",
’location’: "New York, NY"

}
return self.render_json_response(json_dict)

16 Chapter 3. Other Mixins

django-braces Documentation, Release 1.3.0

3.7 OrderableListMixin

New in version 1.1.

A mixin to allow easy ordering of your queryset basing on the GET parameters. Works with ListView.

To use it, define columns that the data can be order by as well as the default column to order by in your view. This can
be done either by simply setting the class attributes...

views.py
class OrderableListView(OrderableListMixin, ListView):

model = Article
orderable_columns = (’id’, ’title’,)
orderable_columns_default = ’id’

...or by using similarly name methods to set the ordering constraints more dynamically:

views.py
class OrderableListView(OrderableListMixin, ListView):

model = Article

def get_orderable_columns(self):
return an iterable
return (’id’, ’title’,)

def get_orderable_columns_default(self):
return a string
return ’id’

The orderable_columns restriction is here in order to stop your users from launching inefficient queries, like
ordering by binary columns.

OrderableListMixin will order your queryset basing on following GET params:

• order_by: column name, e.g. ’title’

• ordering: ‘asc’ (default) or ’desc’

Example url: http://127.0.0.1:8000/articles/?order_by=title&ordering=asc

3.8 CanonicalSlugDetailMixin

New in version 1.3.

A mixin that enforces a canonical slug in the url. Works with DetailView.

If a urlpattern takes a object’s pk and slug as arguments and the slug url argument does not equal the object’s canonical
slug, this mixin will redirect to the url containing the canonical slug.

To use it, the urlpattern must accept both a pk and slug argument in its regex:

urls.py
urlpatterns = patterns(’’,

url(r’^article/(?P<pk>\d+)-(?P<slug>[-\w]+)$’)
ArticleView.as_view(),
’view_article’

)

Then create a standard DetailView that inherits this mixin:

3.7. OrderableListMixin 17

django-braces Documentation, Release 1.3.0

class ArticleView(CanonicalSlugDetailMixin, DetailView):
model = Article

Now, given an Article object with {pk: 1, slug: ’hello-world’}, the url
http://127.0.0.1:8000/article/1-goodbye-moon will redirect to http://127.0.0.1:8000/article/1-hello-world with
the HTTP status code 301 Moved Permanently. Any other non-canonical slug, not just ‘goodbye-moon’, will trigger
the redirect as well.

Control the canonical slug by either implementing the method get_canonical_slug() on the model class:

class Article(models.Model):
blog = models.ForeignKey(’Blog’)
slug = models.SlugField()

def get_canonical_slug(self):
return "{}-{}".format(self.blog.get_canonical_slug(), self.slug)

Or by overriding the get_canonical_slug() method on the view:

class ArticleView(CanonicalSlugDetailMixin, DetailView):
model = Article

def get_canonical_slug():
import codecs
return codecs.encode(self.get_object().slug, ’rot_13’)

Given the same Article as before, this will generate urls of http://127.0.0.1:8000/article/1-my-blog-hello-world and
http://127.0.0.1:8000/article/1-uryyb-jbeyq, respectively.

18 Chapter 3. Other Mixins

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

19

